Package: GWnnegPCA 0.0.5
GWnnegPCA: Geographically Weighted Non-Negative Principal Components Analysis
Implements a geographically weighted non-negative principal components analysis, which consists of the fusion of geographically weighted and sparse non-negative principal components analyses <doi:10.17608/k6.auckland.9850826.v1>.
Authors:
GWnnegPCA_0.0.5.tar.gz
GWnnegPCA_0.0.5.zip(r-4.5)GWnnegPCA_0.0.5.zip(r-4.4)GWnnegPCA_0.0.5.zip(r-4.3)
GWnnegPCA_0.0.5.tgz(r-4.4-any)GWnnegPCA_0.0.5.tgz(r-4.3-any)
GWnnegPCA_0.0.5.tar.gz(r-4.5-noble)GWnnegPCA_0.0.5.tar.gz(r-4.4-noble)
GWnnegPCA_0.0.5.tgz(r-4.4-emscripten)GWnnegPCA_0.0.5.tgz(r-4.3-emscripten)
GWnnegPCA.pdf |GWnnegPCA.html✨
GWnnegPCA/json (API)
# Install 'GWnnegPCA' in R: |
install.packages('GWnnegPCA', repos = c('https://naru-t.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/naru-t/gwnnegpca/issues
Last updated 4 years agofrom:7453e6a597. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win | NOTE | Oct 27 2024 |
R-4.5-linux | NOTE | Oct 27 2024 |
R-4.4-win | NOTE | Oct 27 2024 |
R-4.4-mac | NOTE | Oct 27 2024 |
R-4.3-win | NOTE | Oct 27 2024 |
R-4.3-mac | NOTE | Oct 27 2024 |
Exports:gw_nsprcomp
Dependencies:classclassIntDBIe1071geodistKernSmoothlatticemagrittrMASSnsprcomppracmaproxyRcpps2sfspspDataunitswk
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Geographically Weighted non-negative Principal Component Analysis | gw_nsprcomp |